
Martin Schwaighofer and Thomas Wimmer

2018-03-21 @ fhlug.at

with Frida and friends

Dynamic instrumentation

What is Frida

Å in-process binary instrumentation framework

Å lets you inject a JavaScript engine into any process have control over

Å enables live editing of injected code

Å multi-platform and multi-arch

Å built from several independently useful components

Å offers rich scriptable APIs with bindings for many languages

2

Goals of this talk

Å create awareness of this kind of tooling

Å give an opportunity to play with it

Å help getting past initial difficulties by
sheer numbers

Å at least someone here should get
something to work

Å sƘƻǿ ƻŦ ¢ƘƻƳŀǎΩǎ ǇŜǊǎƻƴŀƭ ǇǊƻƧŜŎǘ
(which is really cool)

3

Structure of this talk

Å live coding session where you can get your
feet wet by participating

Å some more theoretical stuff about what Frida
is and how it works

Å some tools built on Frida and alternative tools
you might want to check out

Å the story of Thomas reverse engineering the
android app for a smart bulb

Å at any point during the talk feel free to
Å interrupt and ask questions or
Å start trying something on your own

4

Safety Instructions

Å depending on the context the things
ȅƻǳ Ŏŀƴ ǳǎŜ ǘƘƛǎ ǎǘǳŦŦ ǘƻ άŎƘŜŀǘέ ƻǊ
άǾƛƻƭŀǘŜ ǘƘŜ ǘŜǊƳǎ ƻŦ ǎŜǊǾƛŎŜǎέ ƻǊ
άŎƻƳƳƛǘ ŦǊŀǳŘέ ǎƻ ŀŎǘ ǊŜǎǇƻƴǎƛōƭȅ

Å do not break things for other people

Å try not to get accounts you care about
banned/blacklisted by getting caught
(SafetyNeton Android,
Warden.exe/VAC and so on)

5

[ŜǘΩǎ ƛƴǎǘŀƭƭ CǊƛŘŀ

The easiest way to install is installing the python bindings via PyPi.

pip install Frida

Actually on a fresh Ubuntu install it would be

sudo apt install python - pip
pip install [-- user] Frida

and then it will prompt you to set ptrace_scope =0 on first launch after each reboot.

6

Live coding time

We will instrument this harmless little program:

#include < stdio.h >
#include < unistd.h >
void f (int n){

printf ("Number: %d \ n", n);
}

int main (int argc , char * argv []){
int i = 0;
printf ("f() is at %p \ n", f);
while (1){

f (i ++);
sleep (1);

}
}

We are cheating on the live coding part and so can you.
Find our notes at: https://mschwaig.github.io/2018/03/21/live-
coding-notes-on-dynamic-instrumentation-with-frida

7

https://mschwaig.github.io/2018/03/21/live-coding-notes-on-dynamic-instrumentation-with-frida

CǊƛŘŀΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜ

8

Source:
https://www.frida.re/docs/hacking/

https://www.frida.re/docs/hacking/

Breaking into a process

In injected mode Frida uses the ptracesystem call meant for debuggers to insert
breakpoints into code, but instead inserts the following logic:

Å Allocate a page

Å Put some bootstrapping code on that page

Å Jump to the bootstrapping code, which

Å Creates a thread that executes the agent code

Å Revert the modifications you made to break in and bootstrap

9

Getting invited into a process

When ptraceis not available or you want you attach to the application when it starts up
there is a special gadget .so file available, which bootstraps and starts running agent
code as soon as the dynamic linker calls the constructor function of the .so file.

The only thing you need to do is either

Å add some code into the target application, which loads the .so file or

Å use LD_PRELOAD to tell the dynamiclinker to loadthe gadget.so beforethe
applicationcode

10

Frida on jailed/unrooted devices

11

Å The gadget approach works on IOs as well as Android

Å With this approach you can use Frida without rooting/jailbreaking your phone

Å Under iOS the process also needs to be marked as debuggableif you want to use
interceptor API

Å You might prefer starting out with an emulator anyways where at least for Android
you can easily have root and therefore run Frida server

Use cases for Frida*

Å interactively inspect some binary that you want to reverse engineer or dump it after
it did some fancy unpacking

Å add logging to code that is in production at a customer site to track down some
tricky bug

Å fake tricky error conditions like a lot of dropped TCP packets without polluting your
production code with testing code

Å see your own app from a hackers perspective

*blatantly copied from my own talk announcement

12

Alternatives to Frida

Å Regular debugging tools like strace , dtrace and valgrind

Å Objection: mobile exploration toolkit for Android/IOs based on Frida
https://github.com/sensepost/objection

Å Xposedframework: instrument Java on Android with tight ART integration

Å Check out these Xposed-based root/emulator bypasses for banking apps:
https://github.com/Razer2015

Å Great collection of Frida-based tools and resources:
https://github.com/dweinstein/awesome-frida

13

https://github.com/sensepost/objection
https://github.com/Razer2015
https://github.com/dweinstein/awesome-frida

A real world use case

FRIDA & Android

14

Motivation

15

home-assistant.io

https://home-assistant.io/

Motivation

16

Philips Hue-> EUR 47,99

Therearesomecheapergenericalternatives
to thoseexpansive bulbs.

[ŜǘΩǎhack oneof thoseso that wecanbetter
integrateit with homeasisstant.

The code for the Android part is again available at
https://mschwaig.github.io/2018/03/21/live-coding-
notes-on-dynamic-instrumentation-with-
frida#update-inspecting-network-requests-by-an-
android-app
We do not disclose our target App.

https://mschwaig.github.io/2018/03/21/live-coding-notes-on-dynamic-instrumentation-with-frida#update-inspecting-network-requests-by-an-android-app

Step #1 MITM

17

Setup:

Å Android Emulator

Å Android SDK PlatformTools
https://developer.android.com/studio/releases/platform-tools.html

Å APK for App we want to attack
https://apkpure.com/some.generic.bulb.app

Å mitmproxy
https://mitmproxy.org/

https://developer.android.com/studio/releases/platform-tools.html
https://apkpure.com/some.generic.bulb.app
https://mitmproxy.org/

Step #2 Check Network Stack

18

Setup:

Å Frida Server
https://www.frida.re/docs/installation/

Å Frida CLI
https://www.frida.re/docs/installation/

Reference:

Å Frida JavaScript API
https://www.frida.re/docs/javascript-api/

https://www.frida.re/docs/installation/
https://www.frida.re/docs/installation/
https://www.frida.re/docs/javascript-api/

Step #3 Check for OkHttpRequest execution

19

Setup:

Å See Step#2

Reference:

Å OkHttpRecipes-> Howto send a requestwith OkHttp?
https://github.com/square/okhttp/wiki/Recipes

Å Frida JavaScript API

https://www.frida.re/docs/javascript-api/

https://github.com/square/okhttp/wiki/Recipes
https://www.frida.re/docs/javascript-api/

Step #4 Log OkHttpRequest & Response objects

20

Setup:

Å See Step#3

Reference:

Å OkHttpJavaDoc
https://square.github.io/okhttp/3.x/okhttp/

Å Frida JavaScript API

https://www.frida.re/docs/javascript-api/

https://square.github.io/okhttp/3.x/okhttp/
https://www.frida.re/docs/javascript-api/

Step #5 Disable certificate pinning

21

Setup:

Å See Step#1 & #4

Reference:

Å OkHttpSource
https://github.com/square/okhttp/blob/master/okhttp/src/main/java/okhttp3/internal/co
nnection/RealConnection.java#L313

Å ConscryptSource
https://android.googlesource.com/platform/libcore/+/38375a4/crypto/src/main/java/org/
conscrypt/OpenSSLSocketImpl.java#579

https://github.com/square/okhttp/blob/master/okhttp/src/main/java/okhttp3/internal/connection/RealConnection.java#L313
https://android.googlesource.com/platform/libcore/+/38375a4/crypto/src/main/java/org/conscrypt/OpenSSLSocketImpl.java#579

Some defenses against Frida

Å Explicit detection algorithms for what Frida does (just google Frida detection)

Å Checksummingcode of modules you control can detect Interceptor modifying them

Å Avoid/obfuscate/encrypt critical data passing though the most exposed boundaries

Å Avoid blindly relying on system functionality/heaps of dependencies

Å Obfuscate your code well/consider obfuscation early in the design process

Å Inline utility functions an attacker would LOVE to hook

22

Caveats for defenses

¸ƻǳ Ŏŀƴƴƻǘ ΨǎŜŎǳǊŜΩ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴ ŀƎŀƛƴǎǘ ǘƘƛǎΣ ȅƻǳ Ŏŀƴ ƻƴƭȅ ƳŀƪŜ ƛǘ ΨƻōǎŎǳǊŜΩ ŀƴŘ ŘƛŦŦƛŎǳƭǘ ǘƻ ŀǘǘŀŎƪΦ {ƻƳŜ
people who want to do this:

Å Banking apps: here is your bank account, make transactions, except if you are malware

Å video streaming platforms: watch this video, but do not upload it to the internet

Å social media platforms: watch ads and click things, except if you are a bot

Å high-profile games: play this game but, except if you cheat/are a bot

In a lot of other scenarios you actually need not worry about these kinds of attacks. Just have a secure design
and give up as soon as somebody gets inside the application process. If you decide to mitigate attacks like that,
then make smart tradeoffs with regards to how you spend your time. This is why it is valuable to know the
attackers perspective.

23

Main sources of inspiration

Sam Rubenstein at BsidesKnoxville 2016: https://youtu.be/RINNW4xOWL8

Ole Andre at r2con 2017: https://youtu.be/sBcLPLtqGYU

Francesco Tamagniat r2con 2017: https://youtu.be/URyd4bcV-Ik

There are some more talks at:

https://www.frida.re/docs/presentations/

24

https://youtu.be/RINNW4xOWL8
https://youtu.be/sBcLPLtqGYU
https://youtu.be/URyd4bcV-Ik
https://www.frida.re/docs/presentations/

Bonus Slide

One unexpected use of this kind of tech is
community-patches for video games.

Dark Souls was famously broken on PC, but
Durante fixed a lot of the graphical issues
by instrumenting function calls to the
DirectX APIs. Another guy, Nwksoriginally
madeit run at 60 FPS. This was possible by
patching the binary.

5ǳǊŀƴǘŜΩǎ ōƭƻƎΥ
http://blog.metaclassofnil.com/

25

http://blog.metaclassofnil.com/

